2026-01-12 Pandas数据处理:高效添加新行、去重与ID序列维护最佳实践,pandas去重操作 Pandas数据处理:高效添加新行、去重与ID序列维护最佳实践,pandas去重操作 正文:在数据分析中,Pandas是Python生态的核心工具,但面对大规模数据时,不当操作可能导致性能瓶颈。本文聚焦三个高频场景:动态添加新行、数据去重逻辑优化,以及ID序列的自动化维护,通过对比不同方案的性能差异,提供工业级解决方案。一、高效添加新行的两种策略直接使用df.append()或逐行添加会显著降低性能,尤其数据量超过万级时。推荐以下方法:1. 预分配内存合并通过列表暂存新数据,最后用pd.concat()一次性合并:new_rows = [] for item in data_stream: new_rows.append({"col1": item.value1, "col2": item.value2}) df = pd.concat([df, pd.DataFrame(new_rows)], ignore_index=True) 优势:减少内存碎片,速度比逐行添加快10倍以上。2. 字典转DataFrame若新数据为结构化字典,直接转换为DataFrame再合并:new_data = {"col1": [1, 2, 3], "col2"... 2026年01月12日 2 阅读 0 评论