2025-07-23 Python多进程实战:突破GIL限制的高效并行计算技巧 Python多进程实战:突破GIL限制的高效并行计算技巧 一、为什么需要多进程?当你的Python程序遇到性能瓶颈时,经常会听到这样的建议:"用多进程替代多线程"。这背后的根本原因在于Python的GIL(全局解释器锁)机制——它使得多线程无法真正实现并行计算。而多进程则通过创建独立的内存空间,每个进程拥有自己的Python解释器,完美规避了GIL的限制。笔者在数据分析项目中首次体验多进程的威力:一个原本需要4小时运行的pandas处理任务,通过8进程并行处理后,耗时直接降至35分钟!二、multiprocessing核心用法1. 基础进程创建python from multiprocessing import Process import osdef task(name): print(f"子进程 {name} (PID: {os.getpid()}) 执行中")if name == 'main': processes = [] for i in range(3): p = Process(target=task, args=(f'worker-{i}',)) processes... 2025年07月23日 5 阅读 0 评论