2025-07-12 Python特征工程实战:从数据清洗到特征构建的全流程解析 Python特征工程实战:从数据清洗到特征构建的全流程解析 在机器学习项目中,特征工程的质量往往直接决定模型效果的上限。据Kaggle竞赛统计,超过80%的冠军团队将主要精力放在特征工程环节。本文将系统介绍如何用Python实现专业级的特征工程处理。一、数据清洗:构建高质量特征的基石数据清洗是特征工程的第一步,也是最容易被忽视的关键环节。我们需要处理以下常见问题:python import pandas as pd import numpy as np处理缺失值def handlemissing(df): # 连续型变量用中位数填充 numcols = df.selectdtypes(include=np.number).columns df[numcols] = df[numcols].fillna(df[numcols].median())# 类别型变量用众数填充 cat_cols = df.select_dtypes(exclude=np.number).columns df[cat_cols] = df[cat_cols].fillna(df[cat_cols].mode().iloc[0]) retur... 2025年07月12日 2 阅读 0 评论