悠悠楠杉
网站页面
正文:
在锂电池生产过程中,极片的质量直接影响电池的性能和安全性。极片缺陷(如划痕、涂层不均、异物等)可能导致电池短路或容量下降。传统的人工检测效率低且易漏检,而基于Python的自动化检测技术正逐渐成为行业解决方案。
import cv2
import numpy as np
# 读取图像并灰度化
image = cv2.imread("electrode_slice.jpg")
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# 高斯模糊降噪
blurred = cv2.GaussianBlur(gray, (5, 5), 0)
# 边缘增强
edges = cv2.Canny(blurred, 50, 150)
# 二值化处理
_, binary = cv2.threshold(edges, 127, 255, cv2.THRESH_BINARY)
# 查找轮廓
contours, _ = cv2.findContours(binary, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# 筛选异常轮廓(面积过大或过小)
defects = []
for cnt in contours:
area = cv2.contourArea(cnt)
if 100 < area < 5000: # 根据实际调整阈值
defects.append(cnt)
对于复杂缺陷(如细微裂纹),传统算法可能失效。可采用以下方法:
1. 训练分类模型
使用Scikit-learn或PyTorch构建分类模型,区分正常与缺陷极片:
python
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
# 假设X是特征矩阵,y是标签(0正常,1缺陷)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
model = RandomForestClassifier(n_estimators=100)
model.fit(X_train, y_train)
accuracy = model.score(X_test, y_test)
print(f"模型准确率:{accuracy:.2f}")
import tensorflow as tf
from tensorflow.keras import layers
model = tf.keras.Sequential([
layers.Conv2D(32, (3, 3), activation='relu', input_shape=(256, 256, 3)),
layers.MaxPooling2D((2, 2)),
layers.Flatten(),
layers.Dense(1, activation='sigmoid')
])
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
model.fit(train_images, train_labels, epochs=10)