TypechoJoeTheme

至尊技术网

登录
用户名
密码

数据读取带键的Kafka记录:高效处理真实数据

2025-12-21
/
0 评论
/
2 阅读
/
正在检测是否收录...
12/21

读取带键的Kafka记录是Apache Flink的一个重要功能。Flink提供了高效的读取器和同步读写机制,能够轻松处理异步消息源。以下是实现高效读取带键Kafka记录的具体步骤:

1. 读取Kafka记录

在Flink中,我们可以使用NewTableReadNewMapReduceRead来读取Kafka记录。以下使用NewTableRead来实现:

flink
import org.apache.flink.data.table.TableRead;
import org.apache.flink.data.table.Column;

public class KafkaRead {
private final String keyColumn;
private final String titleColumn;
private final String descriptionColumn;
private final String filePath;

public KafkaRead(String keyColumn, String titleColumn, String descriptionColumn, String filePath) {
    this.keyColumn = keyColumn;
    this.titleColumn = titleColumn;
    this.descriptionColumn = descriptionColumn;
    this.filePath = filePath;
}

@Override
public Table read() {
    return Table.read(
        input = new TableRead(
            keyColumn = keyColumn,
            titleColumn = titleColumn,
            descriptionColumn = descriptionColumn,
            filePath = filePath,
            lastLine = null
        ),
        map = true
    );
}

}

2. 处理键值对

在读取Kafka记录后,我们可以将键值对结构进行处理。假设我们希望将标题、关键词和描述提取出来,我们可以将键读取为标题,值读取为关键词和描述。

flink
import org.apache.flink.data.table.Column;

public KafkaRead(String keyColumn, String titleColumn, String descriptionColumn, String filePath) {
private final String keys = keyColumn;
private final String titleColumn = titleColumn;
private final String descriptionColumn = descriptionColumn;
private final String filePath;

public KafkaRead(String keyColumn, String titleColumn, String descriptionColumn, String filePath) {
    this.keys = keyColumn;
    this.titleColumn = titleColumn;
    this.descriptionColumn = descriptionColumn;
    this.filePath = filePath;
}

@Override
public Table read() {
    return Table.read(
        input = new TableRead(
            keyColumn = keys,
            titleColumn = titleColumn,
            descriptionColumn = descriptionColumn,
            filePath = filePath,
            lastLine = null
        ),
        map = true
    );
}

}

3. 转换数据

接下来,我们可以将处理好的键值对结构转换为字典或向量。例如,将标题、关键词和描述转换为字典:

flink
import org.apache.flink.data.table.Column;

public KafkaRead(String keyColumn, String titleColumn, String descriptionColumn, String filePath) {
private final String keys = keyColumn;
private final String titleColumn = titleColumn;
private final String descriptionColumn = descriptionColumn;
private final String filePath;

public KafkaRead(String keyColumn, String titleColumn, String descriptionColumn, String filePath) {
    this.keys = keyColumn;
    this.titleColumn = titleColumn;
    this.descriptionColumn = descriptionColumn;
    this.filePath = filePath;
}

@Override
public Table read() {
    return Table.read(
        input = new TableRead(
            keyColumn = keys,
            titleColumn = titleColumn,
            descriptionColumn = descriptionColumn,
            filePath = filePath,
            lastLine = null
        ),
        map = true
    );
}

@Override
public Collection convert() {
    Collection<Dictionary<String, String>> dictCollection = new Collection<Dictionary<String, String>>();
    return dictCollection.from(reading.read().map((Row row) -> {
        return new Dictionary<String, String>() {
            private key = row.get(keyColumn);
            private value = row.get(titleColumn);
            private description = row.get(descriptionColumn);

            return new Value(value, description);
        });
    }).collect();
}

}

4. 分片数据

为了提高读取效率,我们可以将数据分片处理。Flink提供了分片功能,可以将数据按时间或键进行分片。

flink
import org.apache.flink.data.table.Row;
import org.apache.flink.data.table.DataFrame;
import org.apache.flink.data.table.GroupBy;
import org.apache.flink.data.table.Phi;

public KafkaRead(String keyColumn, String titleColumn, String descriptionColumn, String filePath) {
private final String keys = keyColumn;
private final String titleColumn = titleColumn;
private final String descriptionColumn = descriptionColumn;
private final String filePath;

public KafkaRead(String keyColumn, String titleColumn, String descriptionColumn, String filePath) {
    this.keys = keyColumn;
    this.titleColumn = titleColumn;
    this.descriptionColumn = descriptionColumn;
    this.filePath = filePath;
}

@Override
public Table read() {
    return Table.read(
        input = new TableRead(
            keyColumn = keys,
            titleColumn = titleColumn,
            descriptionColumn = descriptionColumn,
            filePath = filePath,
            lastLine = null
        ),
        map = true
    );
}

@Override
public Collection convert() {
    Collection<Phi<Dictionary<String, String>>> phiCollection = new Collection<Phi<Dictionary<String, String>>>();
    return phiCollection.from(reading.read().map((Row row) -> {
        Phi<Dictionary<String, String>> phi = new Phi<Dictionary<String, String>>();
        phi.set("title", row.get(titleColumn));
        phi.set("description", row.get(descriptionColumn));
        phiCollection.add(phi);
    }).collect();
}

}

5. 输出数据

最后,我们可以将处理好的数据以指定的格式输出。假设我们希望将数据以字典格式输出,我们可以将读取器设置为NewPhi

flink
import org.apache.flink.data.table.Phi;

public KafkaRead(String keyColumn, String titleColumn, String descriptionColumn, String filePath) {
private final String keys = keyColumn;
private final String titleColumn = titleColumn;
private final String descriptionColumn = descriptionColumn;
private final String filePath;

public KafkaRead(String keyColumn, String titleColumn, String descriptionColumn, String filePath) {
    this.keys = keyColumn;
    this.titleColumn = titleColumn;
    this.descriptionColumn = descriptionColumn;
    this.filePath = filePath;
}

@Override
public Table read() {
    return Table.read(
        input = new TableRead(
            keyColumn = keys,
            titleColumn = titleColumn,
            descriptionColumn = descriptionColumn,
            filePath = filePath,
            lastLine = null
        ),
        map = true
    );
}

@Override
public Collection convert() {
    Collection<Phi<Dictionary<String, String>>> phiCollection = new Collection<Phi<Dictionary<String, String>>>();
    return phiCollection.from(reading.read().map((Row row) -> {
        Phi<Dictionary<String, String>> phi = new Phi<Dictionary<String, String>>();
        phi.set("title", row.get(titleColumn));
        phi.set("description", row.get(descriptionColumn));
        phiCollection.add(phi);
    }).collect();
}

}

结论:

通过以上步骤,我们可以高效读取带键的Kafka记录,并将其转换为所需的格式。Flink的高效读取器和同步读写机制,使得这一过程变得非常高效。此外,我们还可以通过分片和缓存机制进一步优化读取性能,确保在处理大量数据时仍然保持低吞吐量。

高效处理数据读取分布式存储FlinkKafka记录
朗读
赞(0)
版权属于:

至尊技术网

本文链接:

https://www.zzwws.cn/archives/42053/(转载时请注明本文出处及文章链接)

评论 (0)